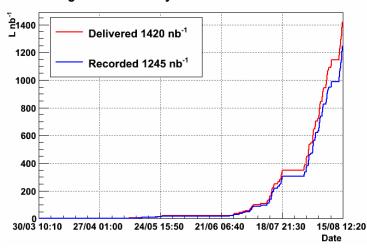
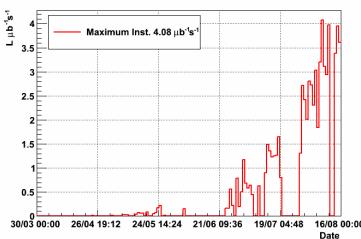
Status & Goals of LHC

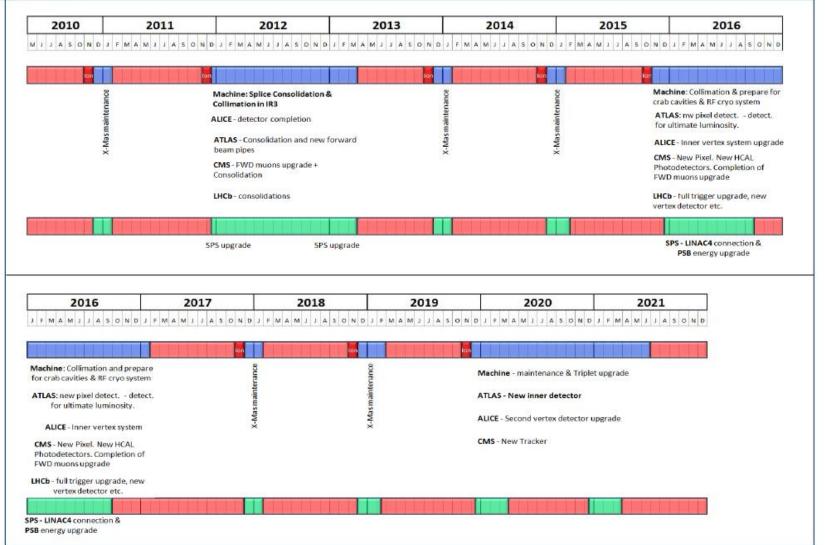

- 1pb-1 of delivered and recorded luminosities reached!
- As of this morning:
 - Delivered: 1420 nb-1
 - Recorded: 1245 nb-1
- New record Inst. Luminosity of 4E30/cm2/s last week
- Goal to reach 1E32/cm2/s by the end of 2010
- Integrated luminosity by end of 2011 ≥ 1 fb-1
 - Requires a peak luminosity of ≥ 1E32/cm2/s during 2011
- Long Term Goal:
 - •Integrated luminosity of ≥3000fb-1 by the end of the LHC life
 - requires a peak luminosity of $\geq 5 \times 10^{34}$ cm⁻²s⁻¹ during 2021-2030
 - \rightarrow integrated yearly luminosity of around 250-300fb⁻¹

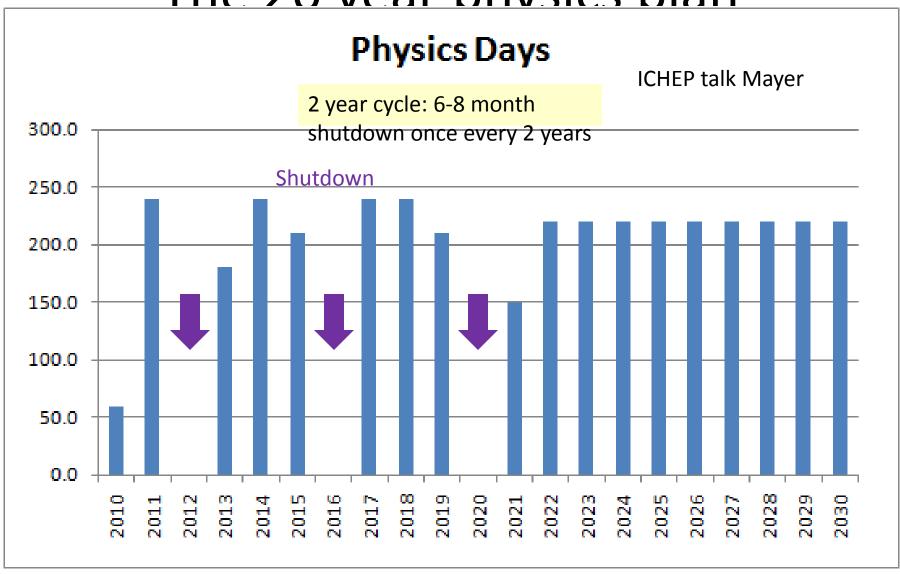
LHC News (very broad-brush)


- Recently had longer periods of stable beams
 - CMS ~88% efficient recording data
 - ~100nb-1 per overnight fill
 - Aiming to maximize fraction validated for physics
 - Questions of sensitivity of analysis to hardware failures
- Waiting for news (this week) on rest of 2010 LHC planning
 - Recall aim is 1e32 by the end of the year
- Can expect to go to 48 on 48 bunches soon

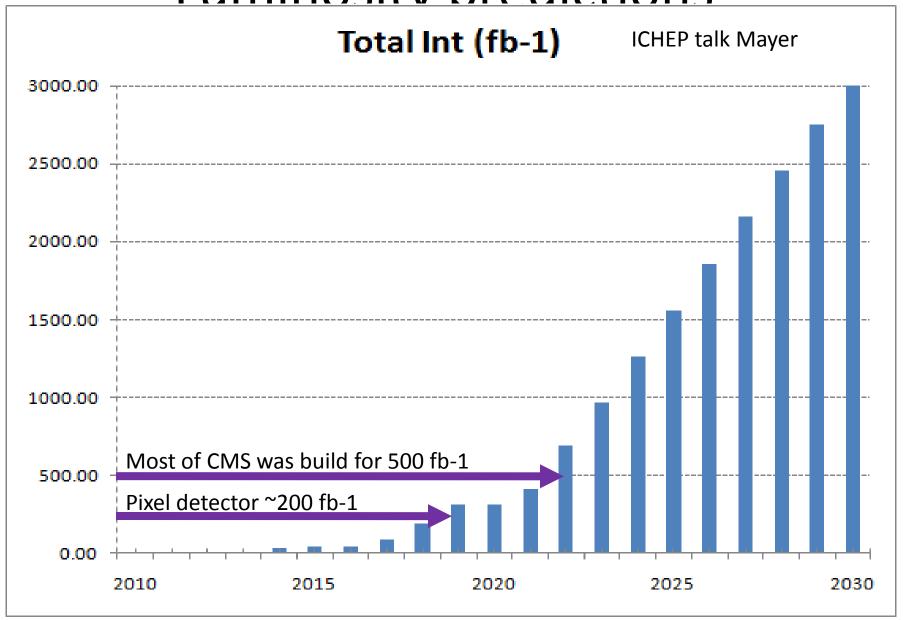
STEP	Nb	Nc	Ib	Itot	MJ	Increase	Peak lumi	Days	Int. Lumi	Approx date	
4	3	1	1.E+11	3.0E+11	0.2	1.2	2.5E+29	5	0.032	W4 June	
5	4	2	1.E+11	4.0E+11	0.2	1.3	5.1E+29	5	0.066	W1 July	
6	8	4	1.E+11	8.0E+11	0.4	2.0	1.0E+30	5	0.13	W2 July	
7	20	10	1.E+11	2.0E+12	1.1	2.5	2.5E+30	10	0.6	W3 & 4 July	
8	24	24	1.E+11	2.4E+12	1.3	1.2	6.1E+30	20	3.2	August	
9	48	48	1.E+11	4.8E+12	2.7	2.0	1.2E+31	10	3.1	September	
10	96	96	1.E+11	9.6E+12	5.4	2.0	2.4E+31	10	6.2	September	
11	144	144	1.E+11	1.4E+13	8.1	1.5	3.6E+31	10	9.3	October	
12	192	192	1.E+11	1.9E+13	10.8	1.3	4.9E+31	10	12.7	October	
13	240	240	1.E+11	2.4E+13	13.4	1.3	6.1E+31	7	11.1	November	

CMS: Integrated Luminosity 2010


CMS: Max. Inst. Luminosity Per Day 2010



The 10 year technical Plan


The 20 year physics plan

Luminosity Projection (ICHEP -S. Myers)

Year	TeV	0EF	β*	Nb	lb	ltot	MJ	Peak luminosity	Pile up	pb-1/day	•	Integrated (fb-1/year)	
								lullillosity			Days	(ib irycur)	(10 1)
2010	3.50	0.20	2.00	796	8.0E+10	6.4E+13	36.0	1.886E+32	1.2643	3.3	20.0	0.1	0.07
2011	3.50	0.25	2.00	796	8.0E+10	6.4E+13	36.0	1.886E+32	1.2643	4.1	240.0	0.98	1.04
2012												0.0	1.0
2013	6.50	0.20	0.55	796	1.15E+11	9.2E+13	96.1	2.632E+33	17.6429	45.5	180.0	8.2	9.2
2014	7.00	0.20	0.55	1404	1.15E+11	1.6E+14	182.5	5.000E+33	19.0000	86.4	240.0	20.7	30.0
2015	7.00	0.20	0.55	2808	1.15E+11	3.2E+14	365.0	1.000E+34	19.0000	172.8	210.0	36.3	66.3
2016											0.0	0.0	66.3
2017	7.00	0.25	0.55	2808	1.15E+11	3.2E+14	365.0	1.000E+34	19.0000	216.0	240.0	51.8	118.1
2018	7.00	0.28	0.55	2808	1.50E+11	4.2E+14	476.1	1.701E+34	32.3251	411.6	240.0	98.8	216.9
2019	7.00	0.30	0.55	2808	1.70E+11	4.8E+14	539.6	2.185E+34	41.5198	566.4	210.0	118.9	335.8
2020											0.0	0.0	335.8
2021	7.00	0.20	0.30	2808	1.70E+11	4.8E+14	539.6	4.006E+34	76.1197	692.3	150.0	103.8	439.7
2022	7.00	0.27	0.25	2808	1.80E+11	5.1E+14	571.3	5.390E+34	102.4060	1257.3	220.0	276.6	716.3
2023	7.00	0.27	0.25	2808	1.80E+11	5.1E+14	571.3	5.390E+34	102.4060	1257.3	220.0	276.6	992.9
2024	7.00	0.29	0.25	2808	1.80E+11	5.1E+14	571.3	5.390E+34	102.4060	1350.5	220.0	297.1	1290.0
2025	7.00	0.29	0.25	2808	1.80E+11	5.1E+14	571.3	5.390E+34	102.4060	1350.5	220.0	297.1	1587.1
2026	7.00	0.29	0.25	2808	1.80E+11	5.1E+14	571.3	5.390E+34	102.4060	1350.5	220.0	297.1	1884.2
2027	7.00	0.29	0.25	2808	1.80E+11	5.1E+14	571.3	5.390E+34	102.4060	1350.5	220.0	297.1	2181.3
2028	7.00	0.29	0.25	2808	1.80E+11	5.1E+14	571.3	5.390E+34	102.4060	1350.5	220.0	297.1	2478.4
2029	7.00	0.29	0.25	2808	1.80E+11	5.1E+14	571.3	5.390E+34	102.4060	1350.5	220.0	297.1	2775.5
2030	7.00	0.29	0.25	2808	1.80E+11	5.1E+14	571.3	5.390E+34	102.4060	1350.5	220.0	297.1	3072.6

Luminosity predictions

CMS Upgrade planning

- The CMS improvement and upgrade strategy aims to maintain and possibly enhance the CMS physics potential.
 - Plans must be based on few shutdowns to install upgrades followed by long runs. Therefore in each case we must prepare for the luminosity that MIGHT BE ACHIEVED in the subsequent long run.
 - Luminosity evolution is difficult to predict
- Experience with first LHC data is valuable for CMS:
 - learn about radiation levels, cavern background, and trigger rates
 - detector performance and physics backgrounds
- CMS is developing a Technical Proposal for the evolution of the CMS detector through 2020. The TP will be completed in the summer for presentation to the LHCC.
- Assuming that the response is positive, we will proceed with a Technical Design report in 2011.
- There's already a declaration of interests from various countries.
- Preliminary cost and schedule also will be included in the Technical Proposal

Technical Proposal

A Technical Proposal

- States the physics case for a project or experiment outlining clearly the goals and requirements
- It presents the general approach, possibly with options, to executing the project and provides evidence that the proposed approach will indeed successfully achieve the goals and satisfy the requirements
- A Technical Proposal is not a "Technical Design Report" (do not need a detailed design or even a unique solution)

CMS U1TDR 2010/08/03

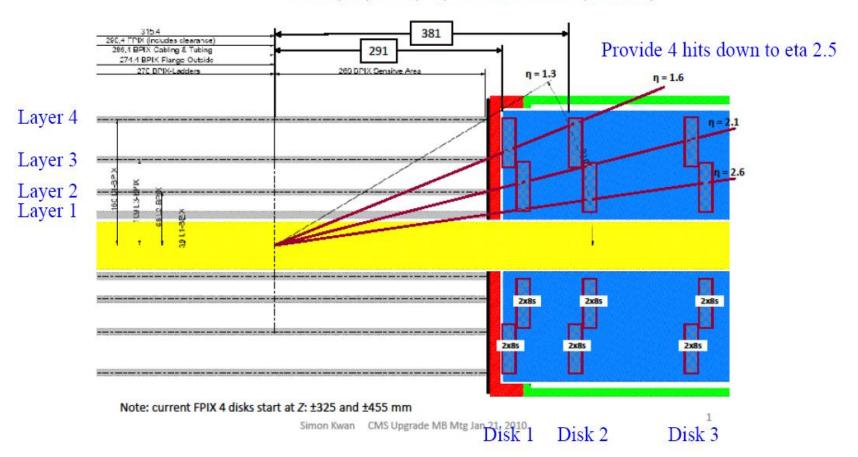
2010/08/03 Head Id: 15869 Archive Id: 16004:16005 Archive Date: 2010/07/27 Archive Tag: trunk

TECHNICAL PROPOSAL FOR THE EVOLUTION OF THE CMS DETECTOR THROUGH 2020

The Large Hadron Collider at CERN has begun operations at 7 TeV center of mass energy. CERN plans to run at this energy until the end of 2011 with the goal of providing an integrated luminosity of 1 fb -1 to the CMS and ATLAS experiments. The LHC will then shut down for 1 to 1.5 years to make the revisions necessary to run at \sim 14 TeV. Operation resumes in 2013. In 2015 or 2016, there will be another long shutdown to install the collimation required to operate at and above the design luminosity of 10³⁴ cm⁻² s⁻¹. Operation will then resume run with the luminosity rising gradually during this period to $2 \cdot 10^{24}$ cm⁻² s⁻¹. The two long shutdowns provide CMS an opportunity to carry out improvements to make the experiment more efficient, to repair problems that have been uncovered during operations, and to upgrade the detector to cope with the ultimate luminosity that will be achieved during this period. The detector work involves the hadron calorimeters, the muon detectors, the pixel detector, the beam radiation monitoring system, the luminosity measurement system, the trigger and the data acquistion system. The purpose of this report is to explain the physics motivations and describe the plans for carrying out these improvements, repairs and upgrades and installing them in the two shutdowns forseen in 2012-2013 and 2015-2016.

Timeline

	65	6	Pixe	l Detect	tor Improvements and Upgrades	115
	66		6.1	Perfor	mance limitations	117
AL CLED	67			6.1.1	Electronics and Readout	
 Almost a final TP ready 	68			6.1.2	Sensor Radiation Hardness	
for the whole CMS	69			6.1.3	Material Budget	
	70		6.2		ption of the Pixel Detector Upgrade	
collaboration to review	71			6.2.1	Geometrical Layout	
by Aug. 15 th .	72			6.2.2	New Beam Pipe	
,	73			6.2.3	Mechanical Support for BPIX	
 Final touch up on Thu. 	74			6.2.4	Mechanical Support for FPIX	
Sep. 2 nd TUSC/FB	75			6,2.5	CO ₂ Cooling	
	76			6.2.6	DC-DC Conversion	
meeting.	77			6.2.8	Sensor Module	
 Final TP expected by 	78 79			6.2.9	Bump bonding	
• .	80			6.2.10	Pixel Module Assembly and Testing	
CMS by Sep. 6 th . (to be	81			6.2.11	Final integration and commissioning	
discussed at the Sept	82		6.3	Perfor	mance Studies	
•	83			6.3.1	Material Budget studies	131
22 nd LHCC meeting)	84			6.3.2	Pattern Recognition and Efficiency Studies	132
	86			6.3.3	Track Parameter Studies	133
	88			6.3.4	Vertex Resolution Studies	135
	87			6.3.5	b-tagging Studies	
	88		6.4	Furthe	r development for the innermost layer	
	89			6.4.1	Frontend electronics and sensors	
	90			6.4.2	Performance studies	137


CMS Improvements and Upgrades Timeline

Shutdown	System	Action	Result	Physics
2012	Hadron Outer	Replace HPDs with SiPMs to reduce noise	Single μ trigger Tails of very high p_T jets	Muons from τ Z/H \rightarrow ττ \rightarrow μX
2012	Hadron Forward	Install new PMT to reduce window hits	Forward jet tagging Improves MET	Vector-boson fusion H
2012	Muon YB4	New RPC CSC (not funded)	Improved trigger at lower thresholds	Increase W acceptance
2012	PLT	New diamond lumi- monitor	Improved lumi meas.	All
2012	Beam Pipe	Install new beam pipe	Easier pixel installation	b-tagging
2016	New Pixel system	Low mass 4 Layers, 3 Disks with new ROC	Reduces dead time Improves b-tag.	SUSY decay chains
2016	HCAL uTCA trigger	Replace HPDs with SiPMs for longitudinal segmentation New electronics	Reduces pileup effects Improves MET Improves τ , e, γ clustering and isolation	SUSY $H \rightarrow \tau\tau$ $H \rightarrow ZZ \rightarrow ll\tau\tau$
2016	Muon (ME42,ME11) uTCA trigger	CSC (Complex YB4 installation) New electronics	Improved μ trigger and reconstruction (1.1< $ \eta $ <1.8, 2.1< $ \eta $ <2.4)	W acceptance WH, H [±] →τν
2020	TRACKER New Trigger Endcap Calo.	Replace tracker Replace trigger	Maintain performance at high SLHC Lumi	Guided by early discoveries

2016 Pixel Upgrade

All Identical disks (disks in locations to maximize 4-hit eta coverage)

6 disks = (6x68) outer + (6x44) inner = 672 2x8 modules (10752 ROCs)

Features of the 2016 Pixel Upgrade

New Layout

- Add a 4th Layer (radius 160 mm) much closer to the TIB wrt present 3rd Layer (106 mm)
 - Improve track seeding efficiency

Improved Tracking and HLT performance (pixel tracks can be found quickly)

Increase redundancy and robustness of pattern recognition

Improved Tracking performance in core of high pt jets

- Reduce Inner Layer Radius (from 44 to \sim 39 or 34 mm to be evaluated) with a new beam pipe 25 mm
 - Improve b-jet tagging
- Reduce Read-Out Inefficiency of present ROC
 - Improve Read-Out Efficiency at $\sim 2X10^{34}$
- Reduce aggressively the Material Budget
 - Decrease the amount of multiple scattering, photon conversions and nuclear interactions.

 Improve Impact Parameter Resolution and Tracking efficiency
- Evaluate reduction of Pixel size in Inner Layers
 - Reduce dependence on charge sharing and maintain resolution with radiation
 - Improve b-jet tagging
 - Improve seed efficiency and quality in very dense environment

Improved Tracking performance in core of High Pt jets, increased robustness

Phase 2 Tracker Upgrade

• Discussion on Tracker Upgrade for Phase II is advancing.

• Plan to replace the Tracker in ~ 2020. TDR 2013-14(?). Lots to do.

• Several R&D activities are ongoing. Few others need to start. Very good synergies/overlaps with developments for Phase I.

- Sensors
- Optical link
- Power System
- Cooling system
- Triggering Layers
- Front-End chips
- Mechanics and materials
- A Draft R&D plan for the next 3-4 years is in preparation and will be part of the Technical Proposal Phase I.

R&D activities for the Full Tracker Upgrade

July 20, 2010

Contents

1	Introduction	2										
2	Sensors development											
3	ASICS development 3.1 SLHC FE chip-specific challenges	(
4	Data links 4.1 The GigaBit Transceiver 4.2 The Versatile Link 4.3 Outlook	ç										
5	Power distribution 5.1 DC-DC converters 5.2 System aspects											
6	CO_2 cooling	11										
7		12 13 13										
8	Detector concepts	16										
9	Outlook	18										